

Validation of reduced-order turbulence modelling in the tokamak L-mode near-edge

G. Snoep^{1,2}, J. Citrin¹, C. Bourdelle³, F. Jenko⁴, A. Ho², M. Marin¹, E. Delabie⁵,
M.J. Pueschel^{1,2}, E.R. Solano⁶, C.D. Stephens⁷, P. Vincenzi⁸ and JET contributors^{*}

¹DIFFER - Dutch Institute for Fundamental Energy Research, Eindhoven, The Netherlands

²Eindhoven University of Technology, Eindhoven, The Netherlands

³CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France

⁴Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany

⁵Oak Ridge National Laboratory, Oak Ridge, TN37831-6169, United States of America

⁶Laboratorio Nacional de Fusion, CIEMAT, Madrid, Spain

⁷University of California, Los Angeles, CA 90095-1547, United States of America

⁸Consorzio RFX, Corso Stati Uniti 4, 35127 Padova, Italy

^{*}See the author list of 'Overview of JET results for optimising ITER operation' by J. Mailloux et al. to be published in Nuclear Fusion Special issue: Overview and Summary Papers from the 28th Fusion Energy Conference (Nice, France, 10-15 May 2021)

The turbulent transport properties of the L-mode near-edge region ($\rho = 0.85-1.0$) play a significant role in determining the discharge performance in tokamak plasmas. Optimising scenario confinement in a predictive manner, e.g. through q -profile tailoring during plasma current ramp-up simulations, demands reduced-order turbulence models that accurately capture the transport physics in this key region. We present an extensive L-mode near-edge validation study of the current state-of-the-art reduced-order turbulence models. QuaLiKiz [1] and TGLF [2] are validated using both gyrokinetic and integrated modelling simulations. A range of plasma conditions seen in NBI-heated JET-ILW discharges [3] are considered. The impact of several magnetic geometry model assumptions, sensitivity to impurities and limited uncertainty quantification are included. Comparison against linear gyrokinetic simulations with GENE [4] shows that the predicted dominant turbulent instabilities at low collisionality match with the ITG/TEM/ETG regime embodied in QuaLiKiz and TGLF. At high collisionality in the pedestal-forming region, the turbulence found with linear gyrokinetics has a drift-resistive character, consistent with previous work [5][6]. Such resistive modes are currently not included in the reduced-order models part of this study. The correlation between accurate scenario predictions and the prevalence of the resistive modes in the pedestal-forming region is tested with integrated modelling. For several discharges, the plasma density and temperature profiles predicted with both QuaLiKiz and TGLF in the JINTRAC suite [7] are compared against experimental measurements.

References

- [1] C Bourdelle et al. *Plasma Physics and Controlled Fusion*, 58:014036, 2016.
- [2] G M Staebler et al. *Physics of Plasmas* 14: 055909, 2007.
- [3] P Vincenzi et al. *4th Asia Pacific Conference on Plasma Physics of AAPS DPP*, 2020.
- [4] F Jenko et al. *Physics of Plasmas*, 7:8, 2000.
- [5] G De Dominicis et al. *Nuclear Fusion* 59:126019, 2019.
- [6] N Bonanomi et al. *Nuclear Fusion*, 59:126025, 2019.
- [7] M Romanelli et al. *Plasma and Fusion Research*, 9:3403023, 2014.